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Abstract

An efficient method of analyzing a loaded wire
enclosed within a rectangular cavity is developed.
The wire and the cavity interior are excited by elec-
tromagnetic sources exterior to the cavity. The for-

mulation of the problem makes use of the theory of
Fourier series expansion to approximate the waveform

of unknown currents excited on the wire. This method

bypasses the dyadic Green’s function approach thereby

leading to a solution which is computationally easier

to handle.

Introduction

The dyadic Green’s function is a powerful tool in

mathematical Physics and has been extensively used in

the analysis of a rectangular cavity. Tai and Rozen-

feld~ gave a detailed derivation of several different

and equivalent representations of the dyadic Green~s
functions for a rectangular cavity. Rahmat-Sarnii

derived the Green’s functions for rectangular cavities
and waveguides by using the theory of distribution.

However, they did not consider the problem of interac-

tion with a wire within a cavity. Recently, Seide13

has considered the problem of determining currents ex-
cited on a wire in a rectangular cavity. He has for-

mulated an integral equation by using the Green’s
function approach and then solved numerically by the

method of moments. The dyadic Green’s functions for

a problem of this nature are difficult to compute nu-
merically. Seidel gave an extensive numerical analyeis

to arrive at a comparatively easier solution. Still,

the dilemma of large computer time and computational

complexity in case of Green’s function approach war-
rants further work in this area.

This paper presents an efficient approach that

treats the problem with a minimum of numerical efforts.
The wire current is represented by a truncated Fourier

series expansion with unknown Fourier coefficients
which are determined by appropriately enforcing bound-

ary conditions. Different load conditions on the wire
are easily treated in this method.

Formulation of the Problem

The rectangular cavity under consideration has the

configuration shown in Figure 1. The dimensions of the

cavity are represented by a, b and c in the X, Y and Z
directions respectively of the Cartesian coordinate

system. For purposes of this problem, consider a per-

fectly conducting, round, thin wire of radius r (r<<A)

running parallel to the X-axis into the cavity interior
through a small hole located at ra = (a, b’, c’). The

wire is excited by electromagnetic sources exterior to

the cavity. lJe assume further that the media in both

the interior and exterior regions are linear, homogen-
eous, isotropic and lossless, and are characterized by

free-space parameters (uo, Co). However, the extension

to 10ssy media is effected by replacing co by a cOrnPlex

permittivity ;. The time harmonic variation with an-

gular frequency ~ and the factor eJwt are understood

throughcmt.

x ‘1

Fig. 1 Configuration of a rectangular cavity

Consider the time-harmonic complex Helmholtz
equation

(1)

where & is the magnetic vector potential, k is the

wave number of the medium of the cavity interior, and

~ is the source or impressed current.

Let us assume that the current on the thin wire
inside the cavity is x-directed and that it undergoes

variation with respect tox. In view of this, the un-

known current on the wire ia represented by a Fourier
cosine series in the interval O < x < a aa

I(x) = &Bvco~ (2)

where B’s are the Fourier coefficients yet to be de-

termined. The representation of Eq. (2) converges to

I(x) on the closed interval O s x s a.
Thus, from Eq. (2) we have

J=U _x~oBvc0&x6(y - b’)~(z - C’) (3)—

where ~ is the unit vector in the direction of X and

6 .is the impulse function.
Note that ~ is x-directed and the wire is thin;

so it is expected that the x-directed & is sufficient
for representing the field inside the cavity. Thus the

Eq. (1) reduces to

(V2+k2)~ = -~oBvco~8(y-b’)8(z-c’) (4)

In terms of the magnetic vector potential we can ex-

press the electric field ~ as

(5)

where PO and Co are the free space permeability and

permittivity respectively. An x-component ~ is read–

ily written from Eq. (5) as

-&(# +k2)Ax
‘x- Joe.

Eliminating Ax from Eq. (4) by Eq. (6) we have

(V2+ k2)Ex =~(y-b’)6(z-c’ )v~o”
o

{k2-(~)2} B@o&X

(6)

(7)
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The general expression for the X-polarized electric

field ~ inside the cavity is

E&=? ? ?A cos~sin$ysi~r. (8)
m=O n=l p=l mnp

where A’s are unknown coefficients.

Obviously, the field represented by Eq. (8) sat-
isfies the boundary conditions on the walls of the

cavity. However, it remains to satisfy the boundary
condition on the surface of the wire. If we substi-

tute the value of ~ from Eq. (8) into Eq. (7) and

perform integrations on both sides by forming suit-

able inner products, we have

j4Bm{k2-(~)2]

A=
~P

mnp)u~obc(k2-K2

where

K2 =
~P

(:)2+ (:)2+ (m)zc
(lo)

In order to evaluate the coefficients B’s, we consid-

er the boundary condition on the surface of the wire
which is given by

A
nxE

–tot
= 2(X)1(X) (11)

where ~ is the unit normal vector on the surface of

the wire, E_tot is the total electric field and ~(x)

is the impedance function of position. In view of
the assumptions made earlier, Eq, (11) reduces to

Ex- i(x)I(x) = -E;an (12)

i
where E

tan
is the tangential component of the im-

pressed electric field.

Let us define a function of the following form

Wu = CO++ 6(y - b’)6(z - C’) (13)

Substituting I(X) and E(x) from Eqs. (2) and (8) into

Eq. (12), multiplying both sides of the resulting

equation scalarly by Wu and finally performing inte-

grations within the limits of cavity dimensions one

obtains

M M
v~oZuvBv + ~&oZLuvBv = Vu, u=0,~,2,, .,M

where

2

~ 4{k2_(~) }sin 2 &’sin2 ~’
z =?

Uv n=l p~l
jbc(k2 – K2mp)wco

I
a

co+ co+ dx

o

ZL
Uv

vu =

I

a
. ;(X) CO+ CO+ dx

o

J

a.

E:an CO+ dx

o

(14)

(15)

(16)

(17)

Note that we have truncated the Fourier series. ?ml

a matrix form Eq. (14) is

[zIIBI + [zLIIBI = [vI ( 1.8)

Finally

[B] = [Z + ZL]-l[V] (19)

This completes the solution to the problem of
determining currents excited on the wire in a rectang-

ular cavity.

Note in Eq. (15) that Zuv= O if u # v. Finally,
Eq. (15) reduces to

ja{k2 - (:) 21
z=

bcum~o
?.

Uu n= 1

COS h(ac) - COS h(a(2c’- C)) sin2 ~,

a sin h (Ixc) b
(20)

where

Ull 2 + (*)2
az= (y) - (;)2 (’21)

and e ‘l foru=Oandcu=2 foru#O.
u

Numerical Results

Selected numerical results are presented to de--

scribe the electromagnetic behavior of a rectangular

cavity having a wire within it. Results are computed
fora 3X4~5 cavity with the wire being located at
(b’, c’) = (2.5, 2). All unitsiare in MKS system. We
have chosen z(x) = ZLd (x) and Etan = & (x-3), where ZL

is the terminating load.

Figure 2 shows currents along the wire for differ–

ent number of Fourier coefficients. It is observed

that only the first 4 coefficients are good enough for
obtaining convergence. Figure 3, shows the convergence
behavior of the current distribution for different

values of mode index p with respect to the largest

dimension of the cavity. It is observed that the con-

vergence to the desired result is achieved for p = 5000..

This number, though large, does not pose any serious
problem with regard to the computing cost. However, it
is observed that the maximum error with p = 1000 is of

the order of 10% which is still good enough to work

with. Figure 4 shows the current variation for dif:Eer-

ent frequencies. The effects of various load condi-

tions are shown in figure 5. The current goes to zero,

as assertecl, when the load approximates an infinite

value, and attains its peak when the load is effectivel-
y zero. Finally, figure 6 shows the current distribut-

ion for different wire-lengths. It is evident that a

short wire can be simulated by a very large continuous
load from the end of the wire to the bottom of the cav-

ity.

Discussions and Conclusions

The analysis of a rectangular cavity is always

associated with a tripply infinite sum. The expres–

sions describing the cavity behavior have been reduced
from a tripply infinite sum to a doubly infinite sum by
using the Fourier series representation. Thie essen-

tially bypasses the Green’s function approach and makes
the solution easier to handle. The resulting doubly

infinite sum is subsequently simplified to a singly in-
finite sum. The number of Fourier coefficients respon-

sible for convergence ia the key issue to this formula-

tion since it determines the size of matrix to be in–
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Fig. 2 Currents for various. J?ourieg coefficients

Hi-g, 3 Currents for various mode indices .

Fig. 6 Currents for different wire lengths .

verted during the process of computations.
This method of analysis is highly efficient an[’

versatile. The tedius task of ordering the modes ex–
isting within the cavity has been eliminated in this
formulation. The convergence of the infinite series
is very fast as compared to other methods. This for–
mulation can easily handle any load conditions at any

point on the wire of any length.
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