G-10

Habibur Rahman

ANALYSIS OF A WIRE IN A RECTANGULAR CAVITY

Jose Perini

Department of Electrical and Computer Engineering
Syracuse University
Syracuse, NY 13210

Abstract

An efficient method of analyzing a loaded wire
enclosed within a rectangular cavity is developed.
The wire and the cavity interior are excited by elec-
tromagnetic sources exterior to the cavity. The for-
mulation of the problem makes use of the theory of
Fourier series expansion to approximate the waveform
of unknown currents excited on the wire. This method
bypasses the dyadic Green's function approach thereby
leading to a solution which is computationally easier
to handle.

Introduction

The dyadic Green's function is a powerful tool in
mathematical Physics and has been extensively used in
the analysis of a rectangular cavity. Tai and Rozen-

feld1 gave a detailed derivation of several different
and equivalent representations of the dyadic Green's
functions for a rectangular cavity. Rahmat-Samii
derived the Green's functions for rectangular cavities
and waveguides by using the theory of distribution.
However, they did not consider the problem of interac-

tion with a wire within a cavity. Recently, Seidel3
has considered the problem of determining currents ex-
cited on a wire in a rectangular cavity. He has for-
mulated an integral equation by using the Green's
function approach and then solved numerically by the
method of moments. The dyadic Green's functions for
a problem of this nature are difficult to compute nu-
merically. Seidel gave an extensive numerical analysis
to arrive at a comparatively easier solution. Still,
the dilemma of large computer time and computational
complexity in case of Green's function approach war-
rants further work in this area.

This paper presents an efficient approach that
treats the problem with a minimum of numerical efforts.
The wire current is represented by a truncated Fourier
series expansion with unknown Fourier coefficients
which are determined by appropriately enforcing bound-
ary conditions. Different load conditions on the wire
are easily treated in this method.

Formulation of the Problem

The rectangular cavity under consideration has the
configuration shown in Figure 1. The dimensions of the
cavity are represented by a, b and ¢ in the X, Y and Z
directions respectively of the Cartesian coordinate
system. For purposes of this problem, consider a per-
fectly conducting, round, thin wire of radius r (r<<})
running parallel to the X-axis into the cavity interior
through a small hole located at r, = (a, b', ¢'). The

wire is excited by electromagnetic sources exterior to
the cavity. We assume further that the media in both
the interior and exterior regions are linear, homogen-
eous, isotropic and lossless, and are characterized by
free-space parameters (uo, so). However, the extension

to lossy media is effected by replacing € by a complex

permittivity €. The time harmonic variation with an-

gular frequency w and the factor ert

throughout.

are understood
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Fig, 1 Configuration of a rectangular cavity
Consider the time-harmonic complex Helmholtz
equation

va+ria=-3g M
where A is the magnetic vector potential, k is the
wave number of the medium of the cavity interior, and
J is the source or impressed current.

Let us assume that the current on the thin wire
inside the cavity is X-directed and that it undergoes
variation with respect to x. In view of this, the un-
known current on the wire is represented by a Fourier
cosine series in the interval 0 <x < a as

1) = £ B cosTx ey

where B's are the Fourier coefficients yet to be de-
termined. The representation of Eq. (2) converges to
I(x) on the closed interval 0 < x < a.

Thus, from Eq. (2) we have

J =1

J=1, EBvcost x8(y - b8z - c") (3)

where gx is the unit vector in the direction of X and

§ is the impulse funetion,
Note that J is x-directed and the wire is thin;
so it is expected that the x-directed A is sufficient

for representing the field inside the cavity. Thus the
Eq. (1) reduces to
(V2+k2)Ax = - T B cosoxs(y-b')8(z—c") (&)
v=0Tv a

In terms of the magnetic vector potential we can ex-
press the electric field E as

= _1 .
E = -juuA + Toey 7(V-4) (5

where g and €q are the free space permeability and

permittivity respectively.
ily written from Eq. (5) as
1 32

_ 3 2
Eyx= Jueg Gxz tK )AX ®

An X-component E is read-

Eliminating Ay from Eq. (4) by Eq. (6) we have
7%+ KHE, = —15(y-b")8(z-c")
X w€0 v=0

2 v
k2~ (%} Bycosilx Q)
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The general expression for the X-polarized electric
field E inside the cavity is

= F§ $ 9 QLU | Y 1)
E. méo nél pglAmnpcos 2 * sinpy 51n%;z (8)

where A's are unknown coefficients.

Obviously, the field represented by Eq. (8) sat-

isfies the boundary conditions on the walls of the
cavity. However, it remains to satisfy the boundary
condition on the surface of the wire. If we substi-
tute the value of Ey from Eq. (8) into Eq. (7) and

perform integrations on both sides by forming suit-
able inner products, we have

. 2 mm,2
J4Bm{k -02;) } o P

A = ——————— sin— b' sin = ¢' 9
map bc(kz—Kinp)meo b ¢
where
2 _ mr 2 nm, 2 T, 2
Ko = Ca0° + %+ &D (10)

In order to evaluate the coefficients B's, we consid-

er the boundary condition on the surface of the wire
which is given by

nxE = 2(0)Ik) (1D

~
where n is the unit normal vector on the surface of

the wire, Etot is the total electric field and z(x)

is the impedance function of position. 1In view of
the assumptions made earlier, Eq. (1ll) reduces to

(12)

N _ai
By~ z2(X)IE) = —Etan

i
where E
tan

pressed electric field.
Let us define a function of the following form

is the tangential component of the im-

W, o= cos{lx 8(y - b")8(z - c") (13)

Substituting I(Xx) and E(X) from Egs. (2) and (8) into

Eq. (12), multiplying both sides of the resulting
equation scalarly by Wu and finally performing inte-

grations within the limits of cavity dimensions one
obtains

M M
vEoZuvBy T EoZlyyBy = Vyr u=0,1,2,..,M (14)
where
2 (Xi)z in? Blprgin? Bler
; - % gAlk-"al ¥ % c

uv  n=l p=l . 2 2
jbe (k™ - Kvnp)meo

a
I cos——x cos%?x dx (15)
0

2 um VT

J% x)cos——x cos_x dx (16)

cos——x dx an

O‘-—*v

Note that we have truncated the Fourier series. 1In
a matrix form Eq. (14) is

[zJ[B] + [zL1[B] = (V] (18)

Finally

[B] = [z + zL1" L

[vl 19

This completes the solution to the problem of
determining currents excited on the wire in a rectan-
gular cavity.

Note in Eq. (15) that Z
Eq. (15) reduces to

=0 if u # v. Finally,

. 2 um, 2
jatk? - %)

Zuu = "he we ngl'
u 0
cos h(ac) - cos h(a(2c'~ ¢)) nm '
o sin h (oc) Sln i;bv 20

where

oP= (2 4 @2 - ATy 1)
and € =1 for u=0 and ¢ = 2 for u # O,

u u

Numerical Results

Selected numerical results are presented to de-
scribe the electromagnetic behavior of a rectangular
cavity having a wire within it. Results are computed
for a 3x4 %5 cavity with the wire being located at
(', c') = (1-5, 2). All units.,are in MKS system. We
have chosen z(x) I§(x) and E1 = § (x-3), where ZL

is the terminating load.

Figure 2 shows currents along the wire for differ-
ent number of Fourier coefficients. It is observed
that only the first 4 coefficients are good enough for
obtaining convergence. Figure 3, shows the convergence
behavior of the current distribution for different
values of mode index p with respect to the largest
dimension of the cavity. It is observed that the con-
vergence to the desired result is achieved for p = 5000.
This number, though large, does not pose any serious
problem with regard to the computing cost., However, it
is observed that the maximum error with p = 1000 is of
the order of 10% which is still good enough to work
with, Figure 4 shows the current variation for differ-
ent frequencies. The effects of various load condi-
tions are shown in figure 5. The current goes to zero,
as asserted, when the load approximates an infinite
value, and attains its peak when the load is effective-
ly zero. Finally, figure 6 shows the current distribu-
tion for different wire-lengths. It is evident that a
short wire can be simulated by a very large continuous
load from the end of the wire to the bottom of the cav-
ity.

Discussions and Conclusions

The analysis of a rectangular cavity is always
associated with a tripply infinite sum. The expres-
sions describing the cavity behavior have been reduced
from a tripply infinite sum to a doubly infinite sum by
using the Fourier series representation. This essen-
tially bypasses the Green's function approach and makes
the solution easier to handle. The resulting doubly
infinite sum is subsequently simplified to a singly in-
finite sum. The number of Fourier coefficients respon-
sible for convergence is the key issue to this formula-
tion since it determines the size of matrix to be in-
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This method of analysis is highly efficient anc
versatile. The tedius task of ordering the modes ex-
isting within the cavity has been eliminated in this
o formulation. The convergence of the infinite series
e is very fast as compared to other methods. This for—
(=3
o

¥ig., 3 Currents for various mode indices .

I ‘90 mulation can easily handle any load conditions at any
)(x.,\?/ point on the wire of any length.
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Fig, 4 Currents for various frequencies.
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